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Abstract. We provide analytic solutions of the nonlinear differential equation

system describing the particle paths below small-amplitude periodic gravity
waves travelling on a constant vorticity current. We show that these paths are

not closed curves. Some solutions can be expressed in terms of Jacobi elliptic

functions, others in terms of hyperelliptic functions. We obtain new kinds of
particle paths. We make some remarks on the stagnation points which could

appear in the fluid due to the vorticity.

1. Introduction. The present work is confined to two-dimensional water waves
with constant vorticity. To gain insight into the motion in such waves we determine
analytically the trajectories beneath small-amplitude water waves in constant vor-
ticity flows. In order to get this Lagrangian feature of the flow, that is, the evolution
of individual water particles, we will firstly find a solution of the Eulerian system
of equations within the framework of small amplitude waves and then we will cal-
culate the solutions of the nonlinear differential equations system which describes
the particle motion.

Many of the theoretical results concerning waves on water make the initial as-
sumption of irrotational flow. There are circumstances in which this is well justified
but there are cases where it is inappropriate. Waves with vorticity are commonly
seen in nature, for example, in shear currents. Tidal flow is a well-known exam-
ple when constant vorticity flow is an appropriate model (see Da Silva T. A. and
Peregrine D. H. [16]). For a discussion of the physical relevance of flows with con-
stant vorticity see also [5]. In 1802, Gerstner [20] constructed an explicit example
of a periodic travelling wave in water of infinite depth with a specific non-constant
vorticity1. The fact that this flow is very special is confirmed also by the fact that
this is the only steady flow satisfying the constraint of constant pressure along the
streamlines cf. [33]. Gerstner’s wave is a two-dimensional wave which adopts the
Lagrangian viewpoint, describing the evolution of individual water particles. Its
surface profile is symmetric [3]. Beneath Gerstner’s wave it is possible to have a
motion of the fluid where all particles describe circles with a depth-dependent radius
[3], [24].
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1This solution was independently re-discovered later by Rankine [37]. Modern detailed descrip-

tions of this wave are given in the recent papers [3] and [24].
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In 1934, Dubreil-Jacotin [18] considered the problem of the existence of steady
periodic water waves with general vorticity. She proved the existence of large classes
of small-amplitude water waves with vorticity. For large-amplitude water waves
with vorticity, in 2004, Constantin and Strauss [13] proved that, for an arbitrary
vorticity distribution and for a given c > 0 and relative mass flux p0, there is a
global continuum of steady periodic waves travelling at speed c in water of finite
depth and such that the horizontal component of the velocity u < c throughout
the fluid. The continuum contains waves with u arbitrarily close to the wave speed
c. The existence of global continua of smooth solutions for the related problem of
periodic waves of infinite depth was proved by Hur [25]. The vorticity does not
destroy the symmetry. The construction in [13] assumes that the wave profiles
are symmetric. Constantin and Escher [8], [9] proved that the symmetry of the
wave profile is not a hypothesis but rather a conclusion when the wave profile is
monotone between crest and trough and the vorticity is positive and non-increasing
with greater depth. Free from restrictions on the vorticity but requiring a quite
precise knowledge of all streamlines in the fluid, Hur proved in [26] that if the wave
profile is monotone near the trough and every streamline has a single minimum per
wavelength located below the trough, then the steady periodic water waves of finite
depth are symmetric. Constantin, Ehrnstöm and Wahlén [7] showed that for an
arbitrary vorticity distribution, a steady periodic water wave with a profile that is
monotone between crests and troughs has to be symmetric.

Another remarkable feature of the rotational steady waves is that they could
contain stagnation points. If (u, v) denotes the velocity field and c the constant
speed of the wave, then a point where u = c and v = 0 is called stagnation point.
There are interesting problems related to the so-called extreme waves: these are
waves with the stagnation points at their crests. Varvaruca [40] proved for a certain
class of vorticity functions, the existence of extreme waves and showed that at such
a stagnation point the profile of the wave has either a corner of 1200 or a horizontal
tangent. For a recent survey of different aspects of the theory of steady water waves
with vorticity see [39].

This paper has interest in finding information about the flow below water waves
with constant vorticity, more precisely, we will investigate how the presence of vor-
ticity influences the particle paths. Throughout the hydrodynamics literature, it has
been quite common to assume that beneath an irrotational periodic two-dimensional
travelling water wave, the particles trace closed, circular or elliptic, orbits. (see for
example [34], [35], [17], [32]). While in this first approximation all particle paths
appear to be closed, Constantin and Villari showed in [12], using phase-plane con-
siderations for the nonlinear system describing the particle motion, that in linear
irrotational periodic gravity water waves no particles trajectory is actually closed,
unless the free surface is flat. Similar results hold for the particle trajectories in
irrotational deep-water (see Constantin, Ehrnström and Villari [6]), and in irrota-
tional shallow water (see Ionescu-Kruse [27] and [28], Section 5.1). Ionescu-Kruse
[27], [28] obtained the exact solutions of the nonlinear differential equation system
which describes the particle motion in small-amplitude shallow water waves and
showed that there does not exist a single pattern for all particles: depending on the
strength of the underling uniform current, some particle trajectories are undulating
curves to the right, or to the left, others are loops with forward drift, and others
are not physically acceptable, in the last case it seems necessary to study the full
nonlinear problem.
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For the full nonlinear problem, Constantin proved in [4], by analyzing a free
boundary problem for harmonic functions in a planar domain, that all water parti-
cles in Stokes waves display a forward drift. For an extension of the investigation
in [4] to deep-water Stokes waves see Henry [21]. In a very recent paper [14], Con-
stantin and Strauss recovered the results in [4] by a simpler approach and they also
investigated the effect of an underlying current on the paths of the particles. While
in periodic waves within a period each particle experiences a backward-forward mo-
tion with a forward drift, Constantin and Escher showed in [10] that in a solitary
water wave there is no backward motion: all particles move in the direction of wave
propagation at a positive speed, the direction being upwards or downwards if the
particle precedes, respectively, does not precede the wave crest.

There have also been some studies of particle paths for rotational waves. With-
in the linear theory, by using phase-plane considerations for the nonlinear system
describing the particle motion, Ehrnström and Villari [19] found that for positive
constant vorticity, the behavior of the streamlines is the same as for the irrotational
waves, though the physical particle paths behave differently if the size of the vortic-
ity is large enough. For negative vorticity they showed that in a frame moving with
the wave, the fluid contains a cat’s-eye vortex (see [36], Ex. 2.4). The paper [42]
by Wahlén which contains an existence result for small-amplitude solutions, based
on local bifurcation theory, showed also that the predictions for negative vorticity
[19] in the linear theory are true. We mention that an alternative approach to the
existence result in [42] for small-amplitude steady waves with constant vorticity was
very recently proposed by Constantin and Varvaruca [15]. Beside the phase-plane
analysis, the exact solutions of the nonlinear system describing the particle motion,
allow a better understanding of the dynamics. For small-amplitude shallow-water
waves with vorticity and background flow Ionescu-Kruse found in [28] the exact
solutions and showed that depending on the relation between the initial data and
the constant vorticity some particles trajectories are undulating curves to the right,
or to the left, others are loops with forward drift, or with backward drift, others
can follow peculiar shapes (see [28], Fig. 7e).

Removing the shallow-water restriction, in the present paper we provide explicit
solutions for the nonlinear system describing the motion of the particles beneath
small-amplitude gravity waves which propagate on the surface of a constant vorticity
flow.

In Section 2 we recall the governing equations for gravity water waves.
In Section 3 we present their nondimensionalisation and scaling. We present two

different scalings, in one the constant vorticity ω0 is scaled whereas in another one
ω0 remains unscaled. We choose x and z the space coordinates, thus, the sign of
the constant vorticity ω0 is opposite to the sign of the constant vorticity considered
if x and y are chosen the space coordinates.

In Section 4 we obtain the periodic travelling solutions of the considered linearized
problems (see (27), respectively (44)), and the speed of propagation of the linear
wave c (see (26), respectively (43)). The solutions are also written in the original
physical variables: see (28), (29), respectively (45), (46). We observe that the speed
of the wave and the pressure have different expressions in the two linearizations.

In Section 5 we find the solutions of the nonlinear differential equation systems
(51) and we describe the possible particle trajectories beneath constant vorticity
water waves. In the study of the system (51) it is interesting to observe that,
for the first linearization, that is, the one made around still water in which the



1478 DELIA IONESCU-KRUSE

constant vorticity ω0 is scaled, the sign of the wave speed c will influence the sign
of the parameter A which appears in the components u and v of the velocity field.
Thus, if we consider left-going waves c < 0, we get A < 0 and if we consider right-
going waves c > 0, we obtain A > 0. For the second linearization, that is, the
one made around a laminar flow characterized by u = ω0z + α, v = 0, α being
a constant, we obtain that, independent of the sign of ω0, the sign of A depends
on the sign of c − h0ω0 −

√
gh0α, where h0 is the finite depth and g the constant

gravitational acceleration. The expression c− h0ω0 −
√
gh0α could be regarded as

”the speed” of a wave which can be left-going or right-going. In the study of the
system (51) a peakon-like trajectory (72) comes up (see also Ionescu-Kruse [31]).
This solution contains the arctanh(·) function, having a vertical asymptote in the
positive direction (Figure 2). For this solution u = c and a stagnation point in
the fluid appear only for t → ±∞, where the path of the particle has a horizontal
tangent. The other solutions of the system (51) are given by (87). We show these
solutions are not closed curves. Some of these solutions can be expressed with
the aid of the Jacobi elliptic functions, others are expressed with the aid of the
hyperelliptic functions. We draw some of the curves obtained for different values
of the parameters (see Figure 3, Figure 4, Figure 5). At the end, we make some
remarks on the stagnation points inside the fluid.

2. The water wave problem. The two-dimensional gravity waves on constant
vorticity water of finite depth are described by the following boundary value prob-
lem:

ut + uux + vuz = −px
vt + uvx + vvz = −pz − g

(EEs)

ux + vz = 0 (MC)
uz − vx = ω0 (VE)

v = ηt + uηx on z = h0 + η(x, t)
v = 0 on z = 0

(KBCs)

p = p0 on z = h0 + η(x, t) (DBC)

(1)

where (u(x, z, t), v(x, z, t)) is the velocity field of the water - no motion takes place
in the y-direction, p(x, z, t) denotes the pressure, g is the constant gravitational
acceleration, p0 being the constant atmospheric pressure and ω0 is the constant
vorticity. The water moves in a domain with a free upper surface at z = h0+η(x, t),
for a constant h0 > 0, and a flat bottom at z = 0. We set the constant water density
ρ = 1. See in the Figure 1 an example of a linear shear flow with constant vorticity
ω = const := ω0 > 0.

x

z

u= zω

z=0 Bottom

h
0
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g

λ
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Figure 1. Linear shear flow.
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3. Non-dimensionalization and scaling. We non-dimensionalize the set of e-
quations (1) using the undisturbed depth of the water h0, as the vertical scale, a
typical wavelength λ, as the horizontal scale, and a typical amplitude of the sur-
face wave a (for more details see [32]). Thus, we define the set of non-dimensional
variables

x 7→ λx, z 7→ h0z, η 7→ aη, t 7→ λ√
gh0

t,

u 7→
√
gh0u, v 7→ h0

√
gh0

λ v,
p 7→ p0 + gh0(1− z) + gh0p,

(2)

where, to avoid new notations, we have used the same symbols for the non-dimensional
variables x, z, η, t, u, v, p on the right-hand side. The partial derivatives uz and
vx will be then replaced by

uz 7→
√
gh0
h0

uz, vx 7→ h0

√
gh0
λ2

vx, (3)

and the natural scaling for the vorticity is

ω0 7→
√
gh0
h0

ω0, (4)

where we have used the same symbol for the non-dimensional ω0 on the right-hand
side.

Therefore, in non-dimensional variables (2), (4), the water-wave problem (1)
becomes:

ut + uux + vuz = −px
δ2(vt + uvx + vvz) = −pz

ux + vz = 0
uz − δ2vx = ω0

v = ε(ηt + uηx) on z = 1 + εη(x, t)
p = εη on z = 1 + εη(x, t)
v = 0 on z = 0

(5)

where we have introduced the amplitude parameter ε = a
h0

and the shallowness

parameter δ = h0

λ .
After the non-dimensionalization of the system (1) let us now proceed with the

scaling transformation. First we observe that, on z = 1 + εη, both v and p are
proportional to ε. This is consistent with the fact that as ε → 0 we must have
v → 0 and p → 0. We can consider the following scaling of the non-dimensional
variables

p 7→ εp, u 7→ εu, v 7→ εv (6)

where we avoided again the introduction of a new notation. For this scaling of u
and v, we also get

ω0 7→ εω0 (7)

The water-wave problem (1) writes in non-dimensional scaled variables (2), (4), (6),
(7), as

ut + ε(uux + vuz) = −px
δ2[vt + ε(uvx + vvz)] = −pz

ux + vz = 0
uz − δ2vx = ω0

v = ηt + εuηx on z = 1 + εη(x, t)
p = η on z = 1 + εη(x, t)
v = 0 on z = 0

(8)
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By letting ε → 0, δ being fixed, we obtain a linear approximation of the problem
(8), that is,

ut + px = 0
δ2vt + pz = 0
ux + vz = 0

uz − δ2vx = ω0

v = ηt on z = 1
p = η on z = 1
v = 0 on z = 0

(9)

This linearization is used in [27], [28] for irrotational and constant vorticity shallow
water waves, in [29], [30] for capillary-gravity waves and in [31] for constant vorticity
gravity waves.

For constant vorticity flows all the streamlines are real-analytic as proved recently
in [11]. Thus, for travelling water waves with constant vorticity one can get the
analytic validity of the linearization (9). In the case of irrotational water waves,
the rigorous analysis of the validity and relevance of the linearizations around some
reference states is carried out in [1].

Instead of the scaling (6), we can also consider the following one

p 7→ εp, u 7→ ω0z + α+ εu, v 7→ εv (10)

with α constant. In this case ω0 remains unscaled. Thus, the water-wave problem
(1) writes in non-dimensional scaled variables (2), (4), (10), as

ut + ε(uux + vuz) + (ω0z + α)ux + ω0v = −px
δ2[vt + ε(uvx + vvz) + (ω0z + α)vx] = −pz

ux + vz = 0
uz − δ2vx = 0

v = ηt + εuηx + εω0ηηx + (ω0 + α)ηx on z = 1 + εη(x, t)
p = η on z = 1 + εη(x, t)
v = 0 on z = 0

(11)

By letting ε → 0, δ being fixed, we obtain a linear approximation of the problem
(11), that is,

ut + (ω0z + α)ux + ω0v + px = 0
δ2[vt + (ω0z + α)vx] + pz = 0

ux + vz = 0
uz − δ2vx = 0

v = ηt + (ω0 + α)ηx on z = 1
p = η on z = 1
v = 0 on z = 0

(12)

We observe that the forth equation in the system (12), which represents the vorticity
equation, becomes in these scaled variables the vorticty equation for an irrotational
flow.

The linearization (12) is used in [12] for irrotational gravity waves, in [6] for the
corresponding deep-water waves, in [22], [23] for capillary-gravity waves and in [19]
for gravity waves over finite depth with constant vorticity. This linearization is
around a laminar flow. Such shear flows are characterized by the flat surface, z = 1,
corresponding to η = 0, p = 0, v = 0 and u = ω0z + α.
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4. Solutions of the linearized problems. Let us solve the linearized systems
(9) and (12) and compare their solutions.
From the third equation and the forth equation in (9), we obtain that

vzz + δ2vxx = 0 (13)

Applying the method of separation of variables, we seek the solution of the equation
(13) in the form

v(x, z, t) = F (x, t)G(z, t) (14)

Substituting (14) into the equation (13), separating the variables and taking into
account the expressions of v on the boundaries, that is, the fifth equation and the
last equation in (9), we find

v(x, z, t) =
1

sinh(Kδ)
sinh(Kδz)ηt (15)

where K ≥ 0 is a constant that might depend on time. Taking into account (15)
and the fourth equation of the system (9), we obtain

u(x, z, t) =
δ

K sinh(Kδ)
cosh(Kδz)ηtx + ω0z + F(x, t) (16)

where F(x, t) is an arbitrary function. The components u and v of the velocity have
to fulfill also the third equation in (9), hence, in view of (15) and (16), we get

δ

K sinh(Kδ)
cosh(Kδz)ηtxx +

∂F(x, t)

∂x
= − Kδ

sinh(Kδ)
cosh(Kδz)ηt (17)

The above relation must hold for all values of x ∈ R, and 0 ≤ z ≤ 1, thus, it follows

∂F(x, t)

∂x
= 0 (18)

and

ηtxx +K2ηt = 0 2 (19)

Seeking periodic travelling wave solutions for the equation (19), we take

K = 2π (20)

and we choose the following solution

η(x, t) = cos(2π(x− ct)) (21)

where c represents the non-dimensional speed of propagation of the linear wave and
is to be determined.

2For constants K independent on time, we can integrate the equation (19) with respect to t

and we get

ηxx +K2η = R(x)

The solution of this equation can be written into the form

η(x, t) = T (t) [c1 cos(Kx) + c2 sin(Kx)] +

[
−

1

K

∫
R(x) sin(Kx) dx

]
cos(Kx) +[

1

K

∫
R(x) cos(Kx) dx

]
sin(Kx)

c1, c2 being integration constants. We observe that to the linearized problem (9) we can get
solutions different from the usual one η(x, t) = cos(K(x− ct)).
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From (18) the function F(x, t) is independent of x, therefore we will denote this
function by F(t). Thus, the components of the velocity filed are

u(x, z, t) =
2πδc

sinh(2πδ)
cosh(2πδz) cos(2π(x− ct)) + ω0z + F(t)

v(x, z, t) =
2πc

sinh(2πδ)
sinh(2πδz) sin(2π(x− ct)) (22)

We return now to the systems (9) in order to find the the expressions of the
pressure. Taking into account the first two equations in (9) and the expressions
(22) of the velocity field, we obtain

p(x, z, t) =
2πδc2

sinh(2πδ)
cosh(2πδz) cos(2π(x− ct))− xF ′(t) (23)

On the free surface z = 1 the pressure (23) has to fulfill the sixth equation of the
system (9). Hence, in view of (21), we get

2πδc2 coth(2πδ) cos(2π(x− ct))− xF ′(t) = cos(2π(x− ct)) (24)

The above relation must hold for all values x ∈ R, therefore, we get

F(t) = constant := c0 (25)

and we provide the non-dimensional speed of the linear wave

c2 =
tanh(2πδ)

2πδ
(26)

Summing up, the solution of the linear system (9) is:

η(x, t) = cos(2π(x− ct))

p(x, z, t) =
2πδc2

sinh(2πδ)
cosh(2πδz) cos(2π(x− ct))

u(x, z, t) =
2πδc

sinh(2πδ)
cosh(2πδz) cos(2π(x− ct)) + ω0z + c0

v(x, z, t) =
2πc

sinh(2πδ)
sinh(2πδz) sin(2π(x− ct))

(27)

with c given by (26).
Taking into account (2), (4), (6), (7), we return to the original physical variables.

The speed of the wave (26) and the solution (27) become:

c = ±
√
gh0

√
tanh(kh0)

kh0
= ±

√
g

tanh(kh0)

k
(28)

η(x, t) = a cos

(2π

x
λ
−

√
tanh(kh0)

kh0

√
gh0
λ

t)

 = εh0 cos[k(x− ct)]

p(x, z, t) = p0 + g(h0 − z) + ε
gh0

cosh(kh0)
cosh(kz) cos[k(x− ct)]

u(x, z, t) = ε
kh0c

sinh(kh0)
cosh(kz) cos[k(x− ct)] + εω0 z + ε

√
gh0c0

v(x, z, t) = ε
kh0c

sinh(kh0)
sinh(kz) sin[k(x− ct)]

(29)

where

k :=
2π

λ
(30)
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is the wave number. The sign minus in (28) indicates a left-going wave.
Let us look now at the linearized system (12). From the third equation and the

forth equation in (12), we obtain again the equation (13). Applying the method
of separation of variables, we seek the solution of this equation in the form (14).
Substituting (14) into the equation (13), separating the variables and taking into
account the expressions of v on the boundaries, that is, the fifth equation and the
last equation in (12), we find

v(x, z, t) =
1

sinh(Kδ)
sinh(Kδz) [ηt + (ω0 + α)ηx] (31)

where K ≥ 0 is a constant that might depend on time. Taking into account (31)
and the fourth equation of the system (12), we obtain

u(x, z, t) =
δ

K sinh(Kδ)
cosh(Kδz) [ηtx + (ω0 + α)ηxx] + F(x, t) (32)

where F(x, t) is an arbitrary function. The components u and v of the velocity have
to fulfill also the third equation in (12), hence, in view of (31) and (32), we get

δ

K sinh(Kδ)
cosh(Kδz) [ηtxx + (ω0 + α)ηxxx] +

∂F(x, t)

∂x

= − Kδ

sinh(Kδ)
cosh(Kδz) [ηt + (ω0 + α)ηx] (33)

The above relation must hold for all values of x ∈ R, and 0 ≤ z ≤ 1, thus, it follows

∂F(x, t)

∂x
= 0 (34)

and

[ηt + (ω0 + α)ηx]xx +K2 [ηt + (ω0 + α)ηx] = 0 (35)

Seeking periodic travelling wave solutions for the equation (35), we take

K = 2π (36)

and we choose the following solution

η(x, t) = cos(2π(x− ct)) (37)

where c represents the non-dimensional speed of propagation of the linear wave and
is to be determined.

From (34) the function F(x, t) is independent of x, therefore we will denote this
function by F(t). Thus, the components (32), (31) of the velocity filed are

u(x, z, t) =
2πδ (c− ω0 − α)

sinh(2πδ)
cosh(2πδz) cos(2π(x− ct)) + F(t)

v(x, z, t) =
2π (c− ω0 − α)

sinh(2πδ)
sinh(2πδz) sin(2π(x− ct)) (38)

We return now to the systems (12) in order to find the the expressions of the
pressure. Taking into account the first two equations in (12) and the expressions
(38) of the velocity field, we obtain

p(x, z, t) =
2πδ(c− ω0 − α)

sinh(2πδ)
(c− ω0z − α) cosh(2πδz) cos(2π(x− ct)) +

+
ω0(c− ω0 − α)

sinh(2πδ)
sinh(2πδz) cos(2π(x− ct))− xF′(t) (39)
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On the free surface z = 1 the pressure (39) has to fulfill the sixth equation of the
system (12). Hence, in view of (37), we get

(c− ω0 − α) [2πδ(c− ω0 − α) coth(2πδ) + ω0] cos(2π(x− ct))−
−xF′(t) = cos(2π(x− ct)) (40)

The above relation must hold for all values x ∈ R, therefore, we get

F(t) = constant := c0 (41)

and the non-dimensional speed of the linear wave c satisfies the relation

(c− ω0 − α) [2πδ(c− ω0 − α) coth(2πδ) + ω0] = 1 (42)

Solving this equation we find

c = ω0 + α+
−ω0 ±

√
ω2
0 + 8πδ coth(2πδ)

4πδ coth(2πδ)
(43)

Summing up, the solution of the linear system (12) is given by

η(x, t) = cos(2π(x− ct))

p(x, z, t) =
(c−ω0−α)

sinh(2πδ)
[2πδ(c−ω0z−α) cosh(2πδz)+ω0 sinh(2πδz)] cos(2π(x−ct))

u(x, z, t) =
2πδ (c− ω0 − α)

sinh(2πδ)
cosh(2πδz) cos(2π(x− ct)) + c0

v(x, z, t) =
2π (c− ω0 − α)

sinh(2πδ)
sinh(2πδz) sin(2π(x− ct))

(44)
with c from (43).

Taking into account (2), (4), (10), we return to the original physical variables.
The speed of the wave (43) and the solution (44) have in physical variables the
following expressions:

c =
√
gh0

 h0√
gh0

ω0 + α+
− h0√

gh0
ω0 ±

√
h2
0

gh0
ω2
0 + 4kh0 coth(kh0)

2kh0 coth(kh0)


=h0ω0+α

√
gh0+

1

2k

[
−ω0 tanh(kh0)±

√
ω2
0 tanh2(kh0)+4gk tanh(kh0)

]
(45)

η(x, t) = εh0 cos[k(x− ct)]

p(x, z, t) = p0+g(h0−z)+ε

(
c−h0ω0−

√
gh0α

)
sinh(kh0)

[
kh0

(
c−ω0z−

√
gh0α

)
cosh(kz)

+ h0ω0 sinh(kz)] cos[k(x− ct)]

u(x, z, t) = ε
kh0

(
c− h0ω0 −

√
gh0α

)
sinh(kh0)

cosh(kz) cos[k(x− ct)]

+ω0z + α
√
gh0 + ε

√
gh0c0

v(x, z, t) = ε
kh0

(
c− h0ω0 −

√
gh0α

)
sinh(kh0)

sinh(kz) sin[k(x− ct)]

(46)
where

k :=
2π

λ
(47)
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is the wave number. The solution (45), (46) with α = 0, c0 = 0 was also obtained
in [19].

Comparing (28), (29) with (45), (46) we observe that the speed of the wave and
the pressure have different expressions in the two linearizations. The velocity field
has in the two linearizations the form:

u(x, z, t) = A cosh(kz) cos[k(x− ct)] +Bz + C
v(x, z, t) = A sinh(kz) sin[k(x− ct)] (48)

where, for the linearization (9):

c = ±
√
g tanh(kh0)

k

A = ε
kh0c

sinh(kh0)
, B = εω0, C = ε

√
gh0c0

(49)

and for the linearization (12):

c− h0ω0 − α
√
gh0 =

1

2k

[
−ω0 tanh(kh0)±

√
ω2
0 tanh2(kh0) + 4gk tanh(kh0)

]
A = ε

kh0
(
c− h0ω0 −

√
gh0α

)
sinh(kh0)

, B = ω0, C = α
√
gh0 + ε

√
gh0c0

(50)

5. Particle trajectories. Let (x(t), z(t)) be the path of a particle in the fluid
domain, with location (x(0), z(0)) := (x0, z0) at time t = 0. The motion of the
particles below the small-amplitude water waves in constant vorticity flows with
the velocity field (48), is described by the following differential system

dx

dt
= u(x, z, t) = A cosh(kz) cos[k(x− ct)] +Bz + C

dz

dt
= v(x, z, t) = A sinh(kz) sin[k(x− ct)]

(51)

The values of A, B, C are either (49) or (50), depending on which linearization
we consider. From (49), (50), for any ω0 6= 0, we get in the both cases

A 6= 0 (52)

For the first linearization (9), the sign of A depends on the sign of the wave
speed c. Thus, if we choose in (49) the square root with minus, that is, we consider
left-going waves, we have A < 0 and if we choose in (49) the square root with plus,
that is, we consider right-going waves, we get A > 0.

For the second linearization (12), the sign of A depends on the sign of c−h0ω0−√
gh0α. Looking at the expression (50) of c − h0ω0 −

√
gh0α, we get that inde-

pendent of the sign of ω0, if we choose in (50) the square root with minus then
c− h0ω0 −

√
gh0α < 0, thus, A < 0, and if we choose in (50) the square root with

plus then c − h0ω0 −
√
gh0α > 0, thus, A > 0. The expression c − h0ω0 −

√
gh0α

could be regarded as ”the speed” of a wave, which is left-going if we take the square
root with minus in (50), and is right-going if we take the square root with plus in
(50).

Indeed, if we choose in (50) the square root with minus then, how k and h0 are
greater then zero, for ω0 > 0, the expression −ω0 tanh(kh0)−√
ω2
0 tanh2(kh0) + 4gk tanh(kh0) is evidently smaller then zero, and for
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ω0 < 0, −ω0 tanh(kh0) −
√
ω2
0 tanh2(kh0) + 4gk tanh(kh0) < 0 is equivalent with

−ω0 tanh(kh0) <
√
ω2
0 tanh2(kh0) + 4gk tanh(kh0). By raising to the power two,

the last inequality is equivalent with tanh kh0 > 0, which is a true inequality for k
and h0 are greater then zero. �

To study the exact solution of the system (51) it is more convenient to re-write
it in the following moving frame

X = k(x− ct), Z = kz (53)

This transformation yields
dX

dt
= kA cosh(Z) cos(X) +BZ + k(C − c)

dZ

dt
= kA sinh(Z) sin(X)

(54)

We write the second equation of this system in the form

dZ

sinh(Z)
= kA sinX(t) dt (55)

Integrating, we get

log

[
tanh

(
Z

2

)]
=

∫
kA sinX(t) dt (56)

If ∫
kA sinX(t) dt < 0 (57)

then

Z(t) = 2 arctanh

[
exp

(∫
kA sinX(t) dt

)]
(58)

Taking into account the formula:

cosh(2x) =
1 + tanh2(x)

1− tanh2(x)
, (59)

and the expression (58) of Z(t), the first equation of the system (54) becomes

dX

dt
= kA

1 + w2

1− w2
cos(X) + 2B arctanh (w) + k(C − c) (60)

where we have denoted by

w = w(t) := exp

(∫
kA sinX(t) dt

)
(61)

With (57) in view, we have

0 < w < 1 (62)

From (61) we get

kA sinX(t) =
1

w(t)

dw

dt
(63)

Differentiating with respect to t this relation, we obtain

kA cos(X)
dX

dt
=

1

w2

[
d2w

dt2
w −

(
dw

dt

)2
]

(64)
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From (63) we have furthermore

k2A2 cos2(X) = k2A2 − 1

w2

(
dw

dt

)2

(65)

Thus, taking into account (64), (65), the equation (60) becomes

d2w

dt2
+

2w

1− w2

(
dw

dt

)2

− k2A2w
1 + w2

1− w2
−

−

√
k2A2w2 −

(
dw

dt

)2[
2B arctanh (w) + k(C − c)

]
= 0 (66)

We make the following substitution

ξ2(w) := k2A2w2 −
(
dw

dt

)2

(67)

A being different from zero (52). Differentiating with respect to t this relation, we
get

ξ
dξ

dw
= k2A2w − d2w

dt2
(68)

We replace (67), (68) into the equation (66) and we obtain the equation

ξ
dξ

dw
+

2w

1− w2
ξ2 +

[
2B arctanh (w) + k(C − c)

]
ξ = 0 (69)

A solution of the equation (69) is

ξ = 0 (70)

which, in view of (67) and (63) implies

sinX(t) = ±1 (71)

Therefore, from (58) with the condition (57), and further from (53), a solution of
the system (51) is

x(t) = ct+ const1

z(t) =
2

k
arctanh [exp (−|kA t+ const2|)]

(72)

const1 and const2 are constants determined by the initial conditions (x(0), z(0)) :=
(x0, z0). This peakon-like solution was also presented in the paper [31]. The graph
of the parametric curve (72) is drawn in the Figure 2.

Figure 2. Peakon-like trajectory.
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Calculating the derivatives of x(t) and z(t) with respect to t, we get

x′(t) = c

z′(t) =


− 2A exp [−(kA t+ const2)]

1− exp [−2(kA t+ const2)]
, kA t+ const2 > 0

2A exp [kA t+ const2]

1− exp [2(kA t+ const2)]
, kA t+ const2 < 0

(73)

Hence, for the solution (72) a stagnation point in the fluid, where x′(t) = c, z′(t) =
0, appear only for t→ ±∞. We observe that at these points the path of the particle
has a horizontal tangent.

The other solutions of the equation (69) satisfy

dξ

dw
+

2w

1− w2
ξ = −

[
2B arctanh (w) + k(C − c)

]
(74)

The homogeneous equation:

dξ

dw
+

2w

1− w2
ξ = 0 (75)

has the solution

ξ(w) = θ(1− w2) (76)

where θ is an integration constant. By the method of variation of constants, the
general solution of the non-homogeneous equation (74) is given by

ξ(w) = θ(w)(1− w2) (77)

where θ(w) is a continuous function which satisfies the equation

dθ

dw
= − 1

1− w2

[
2B arctanh (w) + k(C − c)

]
(78)

The solution of the equation (78) is

θ(w) = −B arctanh 2(w)− k(C − c) arctanh (w) + β (79)

β being a constant. Therefore, the solution of the non-homogeneous equation (74)
has the expression

ξ(w) = (1− w2)
[
β − k(C − c) arctanh (w)−B arctanh 2(w)

]
(80)

Taking into account (67), we get

dw

dt
= ±

√
k2A2w2−(1−w2)2

[
β−k(C−c) arctanh (w)−B arctanh 2(w)

]2
(81)

We separate the variables in (81):

± dw

(1−w2)
√
k2A2 w2

(1−w2)2−
[
β−k(C−c) arctanh (w)−B arctanh 2(w)

]2 = dt (82)

From (58), (61), we have
Z(t)

2
= arctanh (w) (83)

Thus, (82) can be written as

± dZ

2

√
k2A2 tanh2(Z

2 )

(1−tanh2(Z
2 ))2
−
[
β − k(C−c)

2 Z − B
4 Z

2
]2 = dt (84)
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that is,

± dZ√
k2A2 sinh2(Z)−

[
2β − k(C − c)Z − B

2 Z
2
]2 = dt (85)

By (55) we obtain

X(t) = arcsin

[
1

kA

1

sinh(Z(t))

dZ(t)

dt

]
(86)

Further, from (53), we get another solution of the system (51):

x(t) = ct+
1

k
arcsin

[
1

kA

1

sinh(Z(t))

dZ(t)

dt

]
z(t) =

1

k
Z(t)

(87)

Z(t) being the solution of the equation (85).
We observe that the solutions (87) are not closed curves.
Indeed, if there exists t2 > t1 such that Z(t2) = Z(t1), then, in view of (85), we

also have dZ
dt (t1) = ±

√
k2A2 sinh2(Z(t1))−

[
2β − k(C − c)Z(t1)− B

2 Z
2(t1)

]2
= ±

√
k2A2 sinh2(Z(t2))−

[
2β − k(C − c)Z(t2)− B

2 Z
2(t2)

]2
= dZ

dt (t2). Thus, al-

though in the moving frame we obtain in this case a closed curve with Z(t1) = Z(t2)
and X(t1) = X(t2), in the fixed frame we get z(t2) = z(t1) and x(t2) − x(t1) =
c(t2 − t1) 6= 0. If c > 0, the particles which follow these curves will have a forward
drift, if c < 0, they will have a backward drift. �

Let us now investigate more the equation (85). Using the formula: sinh2(x) =
cosh(2x)−1

2 , the equation (85) can be written in the form:

± dZ√
k2A2

2 cosh(2Z)− k2A2

2 −
[
2β − k(C − c)Z − B

2 Z
2
]2 = dt (88)

Taking into account the expression of cosh(x) as Taylor series:

cosh(x) = 1 +
x2

2!
+
x4

4!
+
x6

6!
+ · · · =

∞∑
n=0

x2n

(2n)!
(89)

we get under the square root in (88) the following power series

−4β2 + 4k(C − c)βZ +
[
k2A2 + 2βB − k2(C − c)2

]
Z2 −Bk(C − c)Z3 +

+

(
k2A2

3
− B2

4

)
Z4 +

25k2A2

6!
Z6 +

27k2A2

8!
Z8 + · · · (90)

The constant A is different from zero (52), thus, the power series (90) contains
for sure powers of Z higher than four. A partial sum of the above series is a
polynomial of degree higher than four. Thus, considering only a partial sum of
this series, the solution of the equation (85) involves a hyperelliptic integral (for
hyperelliptic integrals see, for example, [2], page 252). Its inversion would lead to a
hyperelliptic function.

There are special cases when a hyperelliptic integral can be reduced to an elliptic
one and thus, its inversion will contain the Jacobi elliptic functions sn, cn, sc, etc. If
in (90) we have C = c (by choosing appropriate constants c0, c0 in (49), respectively
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(50)) and we consider powers of Z till six, the solution of the equation (85) involves
the following hyperelliptic integral

±
∫

dZ√
2k2A2

45 Z6 +
(
k2A2

3 − B2

4

)
Z4 + (k2A2 + 2βB)Z2 − 4β2

= t (91)

We consider the substitution

Z2 =
1

Ẑ
(92)

and thus, the left-hand side in (91) reduces to an elliptic integral of the first kind:

±
∫

dẐ

−2
√
−4β2Ẑ3 + (k2A2 + 2βB) Ẑ2 +

(
k2A2

3 − B2

4

)
Ẑ + 2k2A2

45

= t (93)

This elliptic integral of the first kind may by reduced to the Legendre normal form.
Case 1: all the zeroes of the cubic polynomial under the square root in (93) are

real and distinct. We denote them by Ẑ1 < Ẑ2 < Ẑ3. Because the leading coefficient
of this cubic polynomial is smaller then zero and its constant term is greater then
zero, we have either

0 < Ẑ1 < Ẑ2 < Ẑ3 (94)

or

Ẑ1 < Ẑ2 < 0 < Ẑ3 (95)

Case 1a: the condition (94) is fulfilled. Then we introduce the variable ϕ by
(see [38] Ch. VI, §4, page 602)

Ẑ = Ẑ2 sin2 ϕ+ Ẑ3 cos2 ϕ > 0 (96)

and we get

−4β2(Ẑ − Ẑ1)(Ẑ − Ẑ2)(Ẑ − Ẑ3)

= 4β2 sin2 ϕ cos2 ϕ(Ẑ3 − Ẑ2)2(Ẑ3 − Ẑ1)
(
1− k21 sin2 ϕ

)
> 0

dẐ = −2 sinϕ cosϕ(Ẑ3 − Ẑ2)dϕ

where the constant 0 < k21 < 1 is given by

k21 :=
Ẑ3 − Ẑ2

Ẑ3 − Ẑ1

(97)

Therefore we obtain the Legendre normal form of the integral in (93):

1

C1

∫
dϕ√

1− k21 sin2 ϕ
= t (98)

the constant factor in front of the integral being equal to

C1 := ±2|β|
√
Ẑ3 − Ẑ1 (99)

The inverse of the integral in (98) is sn (the Jacobi elliptic function sine amplitude,
see, for example, [2])

sn (C1 t; k1) = sinϕ (100)

In view of the notations (92) and (96) we get

Z(t) =
1√

Ẑ2 sn 2 (C1 t; k1) + Ẑ3 cn 2 (C1 t; k1)
(101)
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cn being the Jacobi elliptic function cosine amplitude (see, for example, [2]). Taking
into account the expressions for the derivatives of sn and cn (see, for example, [2]),
that is,

d

dt
sn (t; k) = cn (t; k) dn (t; k)

d

dt
cn (t; k) = − sn (t; k) dn (t; k),

where dn (t; k) :=
√

1− k2 sn 2(t; k), we obtain

dZ(t)

dt
=
C1(Ẑ3 − Ẑ2) sn (C1 t; k1) cn (C1 t; k1) dn (C1 t; k1)[√

Ẑ2 sn 2 (C1 t; k1) + Ẑ3 cn 2 (C1 t; k1)

]3 (102)

We introduce (101) and (102) in (87) and we get x(t) and z(t) explicitly.

We remark that, if k2A2

3 − B2

4 < 0 and k2A2 + 2βB > 0 (this can happen, for
example, for a small enough A and for (B > 0 & β > 0) or (B < 0 & β < 0)),
the coefficients of the cubic polynomial in (93) have alternating signs. Thus, by
Descartes’ rule of signs, if all the roots are real, the situation (94) occurs.

Case 1b: the condition (95) is fulfilled.

Ẑ1, Ẑ2, Ẑ3 being the zeroes of the real cubic polynomial under the square root in
(93), this polynomial has the unique decomposition −4β2(Ẑ − Ẑ1)(Ẑ − Ẑ2)(Ẑ −
Ẑ3). A suitable change of variable transforms the integral (93) to the Legendre
normal form (98) up to a constant. In general, the elliptic functions can have
complex arguments (for example, if the constant factor in front of the integral (98)
is a complex number, then the obtained sine amplitude function will depend on
a complex variable) but here we are interested only in the real case. We are also

looking for a real Z, so, Ẑ introduced by (92) has to be greater then zero. With the
change of variable (96), which brings the integral (93) to the Legendre normal form

(98), because now Ẑ2 < 0, we end up with a Ẑ which can be positive, negative or
zero. Thus, in this case, we get the expression (101) of Z(t) only if t satisfies

Ẑ2 sn 2 (C1 t; k1) + Ẑ3 cn 2 (C1 t; k1) > 0 (103)

that is, by sn 2 (C1 t; k1) + cn 2 (C1 t; k1) = 1, only if t satisfies

sn 2 (C1 t; k1) <
Ẑ3

Ẑ3 − Ẑ2

(104)

where 0 < Ẑ3

Ẑ3−Ẑ2
< 1.

For a very small positive solution Ẑ3 → 0, the set of t’s which fulfill the above
inequality (104) tends to the empty set. Thus, in this case, the hyperelliptic integral
in (91) can not be reduced to an elliptic one and the solution can not be expressed
with the aid of the Jacobi elliptic functions. The solution will be expressed with
the aid of a hyperelliptic function obtained by the inversion of the integral in (91).

Case 2: the cubic polynomial under the square root in (93) has only one real

solution denoted Ẑ0. Because the leading coefficient of this cubic polynomial is
smaller then zero and its constant term is greater then zero, we have

Ẑ0 > 0 (105)
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We denote by p and q the real coefficients such that

− 4β2Ẑ3+
(
k2A2+2βB

)
Ẑ2+

(
k2A2

3
−B

2

4

)
Ẑ+

2k2A2

45
= −4β2(Ẑ−Ẑ0)(Ẑ2+pẐ+q)

(106)
We introduce the variable ψ by (see [38] Ch. VI, §4, page 602)

Ẑ = Ẑ0 −
√
Ẑ2
0 + pẐ0 + q tan2 ψ

2
(107)

and we get

−4β2(Ẑ − Ẑ0)(Ẑ2 + pẐ + q)

= 4β2

(√
Ẑ2
0 + pẐ0 + q

)3 tan2 ψ
2

cos4 ψ2

(
1− k22 sin2 ϕ

)
> 0

dẐ = −
√
Ẑ2
0 + pẐ0 + q

tan ψ
2

cos2 ψ2
dψ

where the constant 0 < k22 < 1 is given by

k22 :=
1

2

1 +
Ẑ0 + p

2√
Ẑ2
0 + pẐ0 + q

 (108)

Therefore we obtain the Legendre normal form of the integral in (93):

1

C2

∫
dψ√

1− k22 sin2 ψ
= t (109)

the constant factor in front of the integral being equal to

C2 := ±4|β|(Ẑ2
0 + pẐ0 + q)

1
4 (110)

The inverse of the integral in (109) is

sn (C2 t; k2) = sinψ (111)

Taking into account (107), we get

Ẑ(t) = Ẑ0 −
√
Ẑ2
0 + pẐ0 + q

1− cn (C2 t; k2)

1 + cn (C2 t; k2)
(112)

If t satisfies the following inequality

cn (C2 t; k2) >

√
Ẑ2
0 + pẐ0 + q − Ẑ0√

Ẑ2
0 + pẐ0 + q + Ẑ0

(113)

where −1 <

√
Ẑ2

0+pẐ0+q−Ẑ0√
Ẑ2

0+pẐ0+q+Ẑ0

< 1, then, Ẑ from (112) is greater than zero and we

obtain by (92) the expression of Z(t). We can calculate the time derivative of Z(t)
and by (87) we get x(t) and z(t) explicitly.

As in the case 1b, for very small positive solution Ẑ0 → 0, the set of t’s which
fulfill the inequality (113) tends to the empty set. Thus, in this case, the hyper-
elliptic integral in (91) can not be reduced to an elliptic one and the solution can
not be expressed with the aid of the Jacobi elliptic functions. The solution will be
expressed with the aid of a hyperelliptic function obtained by the inversion of the
integral in (91).
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We remark that, if k2A2

3 − B2

4 < 0 and k2A2 + 2βB < 0 (this can happen, for
example, for a small enough A and for (B < 0 & β > 0) or (B > 0 & β < 0)), the
coefficients of the cubic polynomial in (93) have signs - - - +. Thus, by Descartes’
rule of signs, only one root is positive and we are in the case 1b or in the case 2.
This positive root it will be close to zero.

Let us draw below some of the curves obtained for different values of the param-
eters, using Mathematica3.

We consider k = 1, h0 = 1, g = 9.8, ε = 0.1, α = 0, β = 1 and ω0 = 2 > 0.
Then, by (50), choosing the square root with sign plus, we get c = 4.07454 > 0,
A = 0.176526 > 0, B = 2 > 0. We take c0 such that C = c. In this case, all the
roots of the cubic polynomial under the square root in (93) are real and we get Z(t)
in the form (101). The graph of the curve obtained is drawn in Figure 3.

Figure 3. Undulating curve to the right.

Using the same values for k, h0, g, ε, α and β but taking ω0 = 20 > 0, we get by
(50), choosing the square root with sign minus, c = 4.29294 > 0, A = −1.33654 < 0,
B = 20 > 0. We take c0 such that C = c. Then all the roots of the cubic polynomial
under the square root in (93) are real and we get Z(t) in the form (101). The graph
of the curve obtained is depicted in Figure 4.

Figure 4. Loops with a forward drift.

For the same k, h0, g, ε, α and β as above, with ω0 = 2 > 0 but choosing the
square root with sign minus in (50), we get c = −1.59773 < 0, A = −0.306137 < 0,
B = 2 > 0. We take c0 such that C = c. Then all the roots of the cubic polynomial
under the square root in (93) are real and we get Z(t) in the form (101). The graph
of the curve obtained is presented in Figure 5.

Figure 5. Loops with a backward drift.

We choose now ω0 = −20 < 0, k, h0, g, ε α and β having the same values as
above. We get by (50), choosing the square root with sign plus, c = −4.29294 < 0,
A = 1.33654 > 0, B = −20 < 0. We take c0 such that C = c. Then the cubic
polynomial under the square root in (93) has only one real root, that is, Ẑ0 =
0.000798. The real coefficients p and q from (106) have the values: p = 9.55422,

3In Mathematica the Jacobi elliptic functions are implemented as JacobiSN[u,m := k21 ]:=

sn(u; k1), JacobiCN[u,m := k21 ]:=cn(u; k1), JacobiDN[u,m := k21 ]:=dn(u; k1)
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q = 24.8588 and the right hand side in (113) has the value 0.99968. We conclude
that in this case the solution can not be expressed through Jacobi elliptic functions.

We would like to make some remarks on the stagnation points inside the fluid.
Calculating the derivatives with respect to t of x(t) and z(t) from (87), we get

x′(t) = c+
1

k

sinh(Z)d
2Z
dt2 − cosh(Z)

(
dZ
dt

)2
sinh(Z)

√
k2A2 sinh2(Z)−

(
dZ
dt

)2
z′(t) =

1

k

dZ

dt

(114)

where, taking into account (85),

d2Z

dt2
= k2A2 sinh(Z) cosh(Z)− [2β − k(C − c)Z − B

2
Z2][−k(C − c)−BZ] (115)

With (85) in view, for those Z(t) satisfying the following equation∣∣∣kA sinh(Z)
∣∣∣ =

∣∣∣2β − k(C − c)Z − B

2
Z2
∣∣∣ (116)

we have
dZ

dt
= 0,

d2Z

dt2
= 0, (117)

and thus, x′(t), z′(t) from (114) becomes

x′(t) = c, z′(t) = 0 (118)

Hence, for the solution (87) the stagnation points in the fluid are obtained by solving
the equation (116).

The equation (116) can be solved graphically. Depending on the signs and on
the values of the parameters A, B, C, c and β, the equation (116) can have one,
two, three, four or six solutions. See, for example, in Figure 6 some possibilities

that can occur. With continuous line we have drawn
∣∣∣kA sinh(Z)

∣∣∣. Which of these

solutions are inside the fluid and their nature can be obtained by a further study.

Figure 6. Graphical solutions of the equation (116).

.
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